Unscented Kalman Filtering for Single Camera Based Motion and Shape Estimation
نویسندگان
چکیده
Accurate estimation of the motion and shape of a moving object is a challenging task due to great variety of noises present from sources such as electronic components and the influence of the external environment, etc. To alleviate the noise, the filtering/estimation approach can be used to reduce it in streaming video to obtain better estimation accuracy in feature points on the moving objects. To deal with the filtering problem in the appropriate nonlinear system, the extended Kalman filter (EKF), which neglects higher-order derivatives in the linearization process, has been very popular. The unscented Kalman filter (UKF), which uses a deterministic sampling approach to capture the mean and covariance estimates with a minimal set of sample points, is able to achieve at least the second order accuracy without Jacobians' computation involved. In this paper, the UKF is applied to the rigid body motion and shape dynamics to estimate feature points on moving objects. The performance evaluation is carried out through the numerical study. The results show that UKF demonstrates substantial improvement in accuracy estimation for implementing the estimation of motion and planar surface parameters of a single camera.
منابع مشابه
Rotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملEstimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study
One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...
متن کاملA Comparison of Unscented and Extended Kalman Filtering for Estimating Quaternion Motion
The unscented Kalman filter is a superior alternative to the extended Kalman filter for a variety of estimation and control problems. However, its effectiveness for improving human motion tracking for virtual reality applications in the presence of noisy data has been unexplored. In this paper, we present an empirical study comparing the performance of unscented and extended Kalman filtering fo...
متن کاملInferring Image Transformation and Structure from Motion-Blurred Images
While capturing images of a scene, the relative motion between the camera and the scene during exposure leads to motion-blur in images. The convolution model for motion-blur is applicable only when the camera motion is restricted to in-plane translations. Blur arising due to rotation and out-of-plane translation of camera cannot be modeled using convolution with a single blur kernel [3, 5, 6]. ...
متن کاملTracking Multiple Moving Objects Using Unscented Kalman Filtering Techniques
It is an important task to reliably detect and track multiple moving objects for video surveillance and monitoring. However, when occlusion occurs in nonlinear motion scenarios, many existing methods often fail to continuously track multiple moving objects of interest. In this paper we propose an effective approach for detection and tracking of multiple moving objects with occlusion. Moving tar...
متن کامل